NAMUR+

Nanomaterjalide tehnoloogiate ja uuringute keskus (NAMUR+), 01.01.2017– 31.12.2021.
Riikliku tähtsusega teaduse infrastruktuuri toetamine teekaardi alusel, Euroopa Regionaalarengu Fond, projekt No 2014‐2020.4.01.16‐0123.

Projekti juht: Tartu Ülikool, TÜ (Dr. V. Kisand). Partnerid: Tallinna Tehnikaülikool (Dr. M. Kauk-Kuusik) ja Keemilise ja Bioloogilise Füüsika Instituut, KBFI (Dr. A. Kahru). Projekti kogumaksumus on 1 782 135 EUR, millest KBFI osa on 270 000 EUR. Projekti omafinantseering on 5%.

KBFI poolsed põhitäitjad: Dr. K. Kasemets, Dr. I. Blinova ja Dr. V. Aruoja

Eesti teadustaristu teekaardi objekti, „Nanomaterjalide tehnoloogiate ja uuringute keskuse“ (NAMUR+) põhieesmärk on välja arendada tipptasemel taristu nanomaterjalide uurimiseks ja rakendamiseks ning koondada see koos partnerite kõrgetasemelise uurimiskompetentsiga atraktiivseks multifunktsionaalseks nanomaterjalide ja nanoturvalisuse alaseid TA-teenuseid pakkuvaks tõmbekeskuseks. Selline keskus põhineb materjalide ja kõrgefektiivse energeetika (TÜ ja TTÜ) ning nanoturvalisuse (KBFI Keskkonnatoksikoloogia labor) teadusgruppide kompetentsil.

NAMUR+ projekti eesmärgiks nanoturvalisuse valdkonnas on täiendada KBFI Keskkonnatoksikoloogia labori taristut nanomaterjalide bioloogiliste mõjude ja ohtlikkuse  uuringuteks. Loodav taristu võimaldab iseloomustada nanomaterjalide ohutust nii tootjale, tarbijale kui ka ümbritsevale keskkonnale ning leida nanomaterjalidele uusi bio- ja meditsiinivaldkonnaga seotud kasutusalasid. Erinevate teenuste raames on võimalik hinnata nanomaterjalide keskkonnaohtust vetikatele, kirpvähilistele ja veetaimedele (OECD standardtestid), antimikroobseid omadusi, tsütotoksilisust imetajate rakkudele ja nanoosakeste bio-interaktsioone.

Projekti tulemused

NAMUR+ projekti tulemusena on hangitud ja töösse rakendatud 3 baaskonfiguratsioonis aparatuuri tugistruktuuri, mis moodustavad ühe osa KBFI nanoturvalisuse infrastruktuurist :

Ökotoksikoloogia tugistruktuur

Termostateeritav ja valgusreguleeritav kliimakamber AlgaeTron AG230  (A) keskkonnaohutuse testide läbiviimiseks ja stereomikroskoop Nikon SMZ1270 (B) koos videokaameraga testorganismide visualiseerimiseks. Testorganismid Daphnia magna (C) ja Thamnocephalus platyurus (D) pildistatud Nikon SMZ1270 stereomikroskoobiga.

In vitro toksikoloogia tugistruktuur

UVA-kliimakamber Climacell 111 EVO (A) nanomaterjalide antimikroobsuse ja ohutuse uuringuteks, mikroplaadipesija ThermoScientificTM Wellwash ELISA (B) testide läbiviimiseks ja automatiseeritud rakulugeja Logos Biosystems Luna-IITM(C) koekultuurirakkude arvukuse ja elulevuse määramiseks ning invertmikroskoop Zeiss Axio Vert.A1 (D) koos videokaameraga Axiocam 208 rakukultuuride visualiseerimiseks.

Nano-bio interaktsioonide tugistruktuur

Laser-skaneeriv konfokaalmikroskoop Zeiss LSM800 nanomaterjalide ja rakkude interaktsioonide uurimiseks.

Projekti raames jätkatakse kompetentse personali koolitamist hangitud seadmete kasutamiseks, millega tagatakse nanoturvalisuse uuringute taristu edukas kasutamine teadus- ja arendustööks ning uute teenuste väljatöötamiseks.

Artiklid, kus on avaldatud tänu projektile NAMUR+:

  1. Blinova, I., Lukjanova, A., Reinik, J., Kahru, A. (2021). Concentration of lanthanides in the Estonian environment: a screening study. Journal of Hazardous Materials Advances, 4, 100034. https://doi.org/10.1016/j.hazadv.2021.100034
  2. Blinova, I., Lukjanova, A., Vija, H., Kahru, A. (2021). Long-Term Toxicity of Gadolinium to the Freshwater Crustacean Daphnia magna. Bulletin of Environmental Contamination and Toxicology. https://doi.org/10.1007/s00128-021-03388-0
  3. Joonas, E., Olli, K., Kahru, A., Aruoja, V. (2021). Biodiversity and functional trait effects on copper toxicity in a proof-of-concept multispecies microalgal assay. Algal Research, 55 (102204). https://doi.org/10.1016/j.algal.2021.102204
  4. Khosrovyan, A., Kahru, A. (2021). Evaluation of the potential toxicity of UV-weathered virgin polyamide microplastics to non-biting midge Chironomus riparius. Environmental Pollution, 287, 117334. https://doi.org/10.1016/j.envpol.2021.117334
  5. Konrad, N., Horetski, M., Sihtmäe, M., Truong, K.-N., Osadchuk, I., Burankova, T., Kielmann, M., Adamson, J., Kahru, A., Rissanen, K., Senge, M. O., Borovkov, V., Aav, R., Kananovich, D. (2021). Thiourea Organocatalysts as Emerging Chiral Pollutants: En Route to Porphyrin-Based (Chir)Optical Sensing. Chemosensors, 9 (10). https://doi.org/10.3390/chemosensors9100278
  6. Khosrovyan, A., Binde Doria, H., Kahru, A., Pfenninger, M. (2022). Polyamide microplastic exposure elicits rapid, strong and genome-wide evolutionary response in the freshwater non-biting midge Chironomus riparius. Chemosphere, 299, 134452. https://doi.org/10.1016/j.chemosphere.2022.134452
  7. Khosrovyan, A., Kahru, A. (2022). Virgin and UV-weathered polyamide microplastics posed no effect on the survival and reproduction of Daphnia magna. PeerJ, 10:e13533. https://doi.org/10.7717/peerj.13533
  8. Sihtmäe, M., Silm, E., Kriis, K., Kahru, A., Kanger, T. (2022). Aminocatalysts are more environmentally friendly than hydrogen-bonding catalysts. Chem-Sus-Chem. https://doi.org/10.1002/cssc.202201045. Epub ahead of print. PMID: 35686861.
  9. Vihodceva, S., Šutka, A., Otsus, M., Vija, H., Grase, L., Kahru, A., Kasemets, K. (2022). Visible-Light Active Flexible and Durable Photocatalytic Antibacterial Ethylene-co-vinyl Acetate—Ag/AgCl/α-Fe2O3 Composite Coating. Nanomaterials, 12, 1984. https://doi.org/10.3390/nano12121984
  10. Blinova, I., Lukjanova, A., Muna, M., Vija, H. and Kahru, A. (2018). Evaluation of the potential hazard of lanthanides to freshwater microcrustaceans. Science of the total Environment, 642, 1100−1107. https://doi.org/10.1016/j.scitotenv.2018.06.155
  11. Muna, M., Blinova, I., Kahru, A., Vinković Vrček, I., Pem, B., Orupõld, K., Heinlaan, M. (2019). Combined effects of test media and dietary algae on the toxicity of CuO and ZnO nanoparticles to freshwater microcrustaceans Daphnia magna and Heterocypris incongruens: food for thought. Nanomaterials, 9 (1), 23. https://doi.org/10.3390/nano9010023
  12. Kasemets, K., Käosaar, S., Vija, H., Fascio, U., Mantecca, P. (2019). Toxicity of differently sized and charged silver nanoparticles to yeast Saccharomyces cerevisiae BY4741: a nano-biointeraction perspective. Nanotoxicology, 13, 1041-1059. https://doi.org/10.1080/17435390.2019.1621401
  13. Rosenberg, M., Azevedo, N. F., Ivask, A. (2019). Propidium iodide staining underestimates viability of adherent bacterial cells. Scientific Reports 9, e6483. https://doi.org/10.1038/s41598-019-42906-3
  14. Joonas, E., Aruoja, V., Olli, K., Kahru, A. (2019). Environmental safety data on CuO and TiO2 nanoparticles for multiple algal species in natural water: Filling the data gaps for risk assessment. Science of The Total Environment, 674, 973−980. https://doi.org/10.1016/j.scitotenv.2018.07.446
  15. Heinlaan, M., Kasemets, K., Aruoja, V., Blinova, I., Bondarenko, O., Lukjanova, A., Khosrovyan, A., Kurvet, I., Pullerits, M., Sihtmäe, M., Vasiliev, G., Vija, H., Kahru, A. (2020). Hazard evaluation of polystyrene nanoplastic with nine bioassays did not show particle-specific acute toxicity. Science of The Total Environment, 707, 136073. https://doi.org/10.1016/j.scitotenv.2019.136073
  16. Khosrovyan, A., Kahru, A. (2020). Evaluation of the hazard of irregularly-shaped co-polyamide microplastics on the freshwater non-biting midge Chironomus riparius through its life cycle. Chemosphere, 244, 125487. https://doi.org/10.1016/j.chemosphere.2019.125487
  17. Khosrovyan, A., Gabrielyan, B., Kahru, A. (2020). Ingestion and effects of virgin polyamide microplastics on Chironomus riparius adult larvae and adult zebrafish Danio rerio. Chemosphere, 259, 127456. https://doi.org/10.1016/j.chemosphere.2020.127456
  18. Selmani, A., Ulm, L., Kasemets, K., Kurvet, I., Erceg, I., Barbir, R., Pem, B., Santini, P., Delač Marion, I., Vinković, T., Krivohlavek, A., Sikirić, M.D., Kahru, A., Vinković Vrček, I. (2020). Stability and toxicity of differently coated selenium nanoparticles under model environmental exposure settings. Chemosphere, 250, 126265. https://doi.org/10.1016/j.chemosphere.2020.126265
  19. Galić, E., Ilić, K., Hartl, S., Tetyczka, C., Kasemets, K., Kurvet, I., Milić, M., Barbir, R., Pem, B., Erceg, I., Sikirić, M.D., Pavičić, I., Roblegg, E., Kahru, A., Vinković Vrček, I. (2020). Impact of surface functionalization on the toxicity and antimicrobial effects of selenium nanoparticles considering different routes of entry. Food and Chemical Toxicology, 144, 111621. https://doi.org/10.1016/j.fct.2020.111621
  20. Spiridonova, J.; Mere, A.; Krunks, M.; Rosenberg, M.; Kahru, A,; Danilson, M.; Krichevskaya, M.; Oja Acik, I. (2020). Enhanced Visible and Ultraviolet Light-Induced Gas-Phase Photocatalytic Activity of TiO2 Thin Films Modified by Increased Amount of Acetylacetone in Precursor Solution for Spray Pyrolysis. Catalysts, 10 (9). https://doi.org/10.3390/catal10091011
  21. Kubo, A.-L., Vasiliev, G., Vija, H., Krishtal, J., Tõugu, V., Visnapuu, M., Kisand, V., Bondarenko, O.M. (2020). Surface carboxylation or PEGylation decreases CuO nanoparticles’ cytotoxicity to human cells in vitro without compromising their antibacterial properties. Archives of Toxicology. https://doi.org/10.1007/s00204-020-02720-7
  22. Rosenberg, M.; Visnapuu, M.; Vija, H.; Kisand, V.; Kasemets, K.; Kahru, A.; Ivask, A. (2020). Selective antibiofilm properties and biocompatibility of nano-ZnO and nano-ZnO/Ag coated surfaces. Scientific Reports, 10 (1). https://doi.org/10.1038/s41598-020-70169-w
  23. Kusumahastuti, D.K.A., Sihtmäe, M., Aruoja, V., Gathergood, N., Kahru, A. (2021). Ecotoxicity profiling of a library of 24 l-phenylalanine derived surface-active ionic liquids (SAILs). Sustainable Chemistry and Pharmacy, 19, 100369. https://doi.org/10.1016/j.scp.2020.100369
  24. Jemec Kokalj, A., Dolar, A., Titova, J., Visnapuu, M., Škrlep, L., Drobne, D., Vija, H., Kisand, V., Heinlaan, M. (2021). Long term exposure to virgin and recycled LDPE microplastics induced minor effects in the freshwater and terrestrial crustaceans Daphnia magna and Porcellio scaber. Polymers, 13 (5). https://doi.org/10.3390/polym13050771
  25. Vihodceva, S., Šutka, A., Sihtmäe, M., Rosenberg, M., Otsus, M., Kurvet, I., Smits, K., Bikse, L., Kahru, A., & Kasemets, K. (2021). Antibacterial Activity of Positively and Negatively Charged Hematite (α-Fe2O3) Nanoparticles to Escherichia coli, Staphylococcus aureus and Vibrio fischeri. Nanomaterials, 11(3), 652. https://doi.org/10.3390/nano11030652